extension | φ:Q→Aut N | d | ρ | Label | ID |
(C22×C10).1C23 = C23⋊C4⋊5D5 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | 8- | (C2^2xC10).1C2^3 | 320,367 |
(C22×C10).2C23 = C23⋊D20 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 40 | 8+ | (C2^2xC10).2C2^3 | 320,368 |
(C22×C10).3C23 = C23.5D20 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | 8- | (C2^2xC10).3C2^3 | 320,369 |
(C22×C10).4C23 = D5×C23⋊C4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 40 | 8+ | (C2^2xC10).4C2^3 | 320,370 |
(C22×C10).5C23 = 2+ 1+4.2D5 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | 8- | (C2^2xC10).5C2^3 | 320,870 |
(C22×C10).6C23 = 2+ 1+4⋊2D5 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 40 | 8+ | (C2^2xC10).6C2^3 | 320,871 |
(C22×C10).7C23 = C24.56D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).7C2^3 | 320,1258 |
(C22×C10).8C23 = C24⋊3D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).8C2^3 | 320,1261 |
(C22×C10).9C23 = C24.33D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).9C2^3 | 320,1263 |
(C22×C10).10C23 = C24.34D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).10C2^3 | 320,1264 |
(C22×C10).11C23 = C20⋊(C4○D4) | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).11C2^3 | 320,1268 |
(C22×C10).12C23 = C10.682- 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).12C2^3 | 320,1269 |
(C22×C10).13C23 = Dic10⋊19D4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).13C2^3 | 320,1270 |
(C22×C10).14C23 = Dic10⋊20D4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).14C2^3 | 320,1271 |
(C22×C10).15C23 = C4⋊C4.178D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).15C2^3 | 320,1272 |
(C22×C10).16C23 = C10.342+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).16C2^3 | 320,1273 |
(C22×C10).17C23 = C10.352+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).17C2^3 | 320,1274 |
(C22×C10).18C23 = C10.372+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).18C2^3 | 320,1277 |
(C22×C10).19C23 = C4⋊C4⋊21D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).19C2^3 | 320,1278 |
(C22×C10).20C23 = C10.382+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).20C2^3 | 320,1279 |
(C22×C10).21C23 = C10.402+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).21C2^3 | 320,1282 |
(C22×C10).22C23 = C10.732- 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).22C2^3 | 320,1283 |
(C22×C10).23C23 = D20⋊20D4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).23C2^3 | 320,1284 |
(C22×C10).24C23 = C10.422+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).24C2^3 | 320,1285 |
(C22×C10).25C23 = C10.432+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).25C2^3 | 320,1286 |
(C22×C10).26C23 = C10.442+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).26C2^3 | 320,1287 |
(C22×C10).27C23 = C10.462+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).27C2^3 | 320,1289 |
(C22×C10).28C23 = C10.792- 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).28C2^3 | 320,1320 |
(C22×C10).29C23 = C4⋊C4.197D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).29C2^3 | 320,1321 |
(C22×C10).30C23 = C10.802- 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).30C2^3 | 320,1322 |
(C22×C10).31C23 = D5×C22.D4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).31C2^3 | 320,1324 |
(C22×C10).32C23 = C10.1202+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).32C2^3 | 320,1325 |
(C22×C10).33C23 = C10.1212+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).33C2^3 | 320,1326 |
(C22×C10).34C23 = C10.822- 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).34C2^3 | 320,1327 |
(C22×C10).35C23 = C4⋊C4⋊28D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).35C2^3 | 320,1328 |
(C22×C10).36C23 = C10.632+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).36C2^3 | 320,1332 |
(C22×C10).37C23 = C10.642+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).37C2^3 | 320,1333 |
(C22×C10).38C23 = C10.842- 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).38C2^3 | 320,1334 |
(C22×C10).39C23 = C10.662+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).39C2^3 | 320,1335 |
(C22×C10).40C23 = C10.672+ 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).40C2^3 | 320,1336 |
(C22×C10).41C23 = C10.852- 1+4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).41C2^3 | 320,1337 |
(C22×C10).42C23 = C42.233D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).42C2^3 | 320,1340 |
(C22×C10).43C23 = C42.137D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).43C2^3 | 320,1341 |
(C22×C10).44C23 = C42.138D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).44C2^3 | 320,1342 |
(C22×C10).45C23 = C42.139D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).45C2^3 | 320,1343 |
(C22×C10).46C23 = C42.140D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).46C2^3 | 320,1344 |
(C22×C10).47C23 = D5×C4.4D4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).47C2^3 | 320,1345 |
(C22×C10).48C23 = C42⋊18D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).48C2^3 | 320,1346 |
(C22×C10).49C23 = C42.141D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).49C2^3 | 320,1347 |
(C22×C10).50C23 = D20⋊10D4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).50C2^3 | 320,1348 |
(C22×C10).51C23 = Dic10⋊10D4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).51C2^3 | 320,1349 |
(C22×C10).52C23 = C42⋊20D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).52C2^3 | 320,1350 |
(C22×C10).53C23 = C42⋊21D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).53C2^3 | 320,1351 |
(C22×C10).54C23 = C42.234D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).54C2^3 | 320,1352 |
(C22×C10).55C23 = C42.143D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).55C2^3 | 320,1353 |
(C22×C10).56C23 = C42.144D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).56C2^3 | 320,1354 |
(C22×C10).57C23 = C42⋊22D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).57C2^3 | 320,1355 |
(C22×C10).58C23 = C42.145D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).58C2^3 | 320,1356 |
(C22×C10).59C23 = C42.159D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).59C2^3 | 320,1373 |
(C22×C10).60C23 = C42.160D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).60C2^3 | 320,1374 |
(C22×C10).61C23 = D5×C42⋊2C2 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).61C2^3 | 320,1375 |
(C22×C10).62C23 = C42⋊23D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).62C2^3 | 320,1376 |
(C22×C10).63C23 = C42⋊24D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).63C2^3 | 320,1377 |
(C22×C10).64C23 = C42.189D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).64C2^3 | 320,1378 |
(C22×C10).65C23 = C42.161D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).65C2^3 | 320,1379 |
(C22×C10).66C23 = C42.162D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).66C2^3 | 320,1380 |
(C22×C10).67C23 = C42.163D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).67C2^3 | 320,1381 |
(C22×C10).68C23 = C42.164D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).68C2^3 | 320,1382 |
(C22×C10).69C23 = C42⋊25D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).69C2^3 | 320,1383 |
(C22×C10).70C23 = C42.165D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).70C2^3 | 320,1384 |
(C22×C10).71C23 = C42.166D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).71C2^3 | 320,1385 |
(C22×C10).72C23 = D5×C4⋊1D4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).72C2^3 | 320,1386 |
(C22×C10).73C23 = C42⋊26D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).73C2^3 | 320,1387 |
(C22×C10).74C23 = C42.238D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).74C2^3 | 320,1388 |
(C22×C10).75C23 = D20⋊11D4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).75C2^3 | 320,1389 |
(C22×C10).76C23 = Dic10⋊11D4 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).76C2^3 | 320,1390 |
(C22×C10).77C23 = C42.168D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).77C2^3 | 320,1391 |
(C22×C10).78C23 = C42⋊28D10 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).78C2^3 | 320,1392 |
(C22×C10).79C23 = D20.37C23 | φ: C23/C1 → C23 ⊆ Aut C22×C10 | 80 | 8- | (C2^2xC10).79C2^3 | 320,1623 |
(C22×C10).80C23 = C10×C23⋊C4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).80C2^3 | 320,910 |
(C22×C10).81C23 = C5×C23.C23 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).81C2^3 | 320,911 |
(C22×C10).82C23 = C5×C2≀C22 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 40 | 4 | (C2^2xC10).82C2^3 | 320,958 |
(C22×C10).83C23 = C5×C23.7D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).83C2^3 | 320,959 |
(C22×C10).84C23 = C5×C22.19C24 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).84C2^3 | 320,1527 |
(C22×C10).85C23 = C10×C4.4D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).85C2^3 | 320,1528 |
(C22×C10).86C23 = C10×C42⋊2C2 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).86C2^3 | 320,1530 |
(C22×C10).87C23 = C5×C23.36C23 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).87C2^3 | 320,1531 |
(C22×C10).88C23 = C10×C4⋊1D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).88C2^3 | 320,1532 |
(C22×C10).89C23 = C5×C22.26C24 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).89C2^3 | 320,1534 |
(C22×C10).90C23 = C5×C23⋊3D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).90C2^3 | 320,1536 |
(C22×C10).91C23 = C5×C22.29C24 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).91C2^3 | 320,1537 |
(C22×C10).92C23 = C5×C22.31C24 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).92C2^3 | 320,1539 |
(C22×C10).93C23 = C5×C22.32C24 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).93C2^3 | 320,1540 |
(C22×C10).94C23 = C5×C22.33C24 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).94C2^3 | 320,1541 |
(C22×C10).95C23 = C5×C22.34C24 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).95C2^3 | 320,1542 |
(C22×C10).96C23 = C5×C22.35C24 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).96C2^3 | 320,1543 |
(C22×C10).97C23 = C5×C22.36C24 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).97C2^3 | 320,1544 |
(C22×C10).98C23 = C5×D4⋊5D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).98C2^3 | 320,1548 |
(C22×C10).99C23 = C5×D4⋊6D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).99C2^3 | 320,1549 |
(C22×C10).100C23 = C5×Q8⋊5D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).100C2^3 | 320,1550 |
(C22×C10).101C23 = C5×Q8⋊6D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).101C2^3 | 320,1552 |
(C22×C10).102C23 = C5×C22.47C24 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).102C2^3 | 320,1555 |
(C22×C10).103C23 = C5×C22.49C24 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).103C2^3 | 320,1557 |
(C22×C10).104C23 = C5×C22.50C24 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).104C2^3 | 320,1558 |
(C22×C10).105C23 = C5×C22.53C24 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).105C2^3 | 320,1561 |
(C22×C10).106C23 = C5×C22.54C24 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).106C2^3 | 320,1562 |
(C22×C10).107C23 = C5×C24⋊C22 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).107C2^3 | 320,1563 |
(C22×C10).108C23 = C5×C22.56C24 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).108C2^3 | 320,1564 |
(C22×C10).109C23 = C5×C22.57C24 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).109C2^3 | 320,1565 |
(C22×C10).110C23 = C5×C2.C25 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).110C2^3 | 320,1634 |
(C22×C10).111C23 = C2×C23.1D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).111C2^3 | 320,581 |
(C22×C10).112C23 = (C2×D20)⋊25C4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).112C2^3 | 320,633 |
(C22×C10).113C23 = C24⋊2D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 40 | 4 | (C2^2xC10).113C2^3 | 320,659 |
(C22×C10).114C23 = C22⋊C4⋊D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).114C2^3 | 320,680 |
(C22×C10).115C23 = C2×C23⋊Dic5 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).115C2^3 | 320,846 |
(C22×C10).116C23 = (D4×C10)⋊22C4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).116C2^3 | 320,867 |
(C22×C10).117C23 = C2×Dic5.14D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).117C2^3 | 320,1153 |
(C22×C10).118C23 = C2×C23.D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).118C2^3 | 320,1154 |
(C22×C10).119C23 = C23⋊2Dic10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).119C2^3 | 320,1155 |
(C22×C10).120C23 = C2×D5×C22⋊C4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).120C2^3 | 320,1156 |
(C22×C10).121C23 = C2×Dic5⋊4D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).121C2^3 | 320,1157 |
(C22×C10).122C23 = C24.24D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).122C2^3 | 320,1158 |
(C22×C10).123C23 = C2×C22⋊D20 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).123C2^3 | 320,1159 |
(C22×C10).124C23 = C2×D10.12D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).124C2^3 | 320,1160 |
(C22×C10).125C23 = C2×D10⋊D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).125C2^3 | 320,1161 |
(C22×C10).126C23 = C2×C22.D20 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).126C2^3 | 320,1164 |
(C22×C10).127C23 = C23⋊3D20 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).127C2^3 | 320,1165 |
(C22×C10).128C23 = C24.30D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).128C2^3 | 320,1166 |
(C22×C10).129C23 = C24.31D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).129C2^3 | 320,1167 |
(C22×C10).130C23 = C42.87D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).130C2^3 | 320,1188 |
(C22×C10).131C23 = C42.88D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).131C2^3 | 320,1189 |
(C22×C10).132C23 = C42.89D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).132C2^3 | 320,1190 |
(C22×C10).133C23 = C42.90D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).133C2^3 | 320,1191 |
(C22×C10).134C23 = D5×C42⋊C2 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).134C2^3 | 320,1192 |
(C22×C10).135C23 = C42⋊7D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).135C2^3 | 320,1193 |
(C22×C10).136C23 = C42.188D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).136C2^3 | 320,1194 |
(C22×C10).137C23 = C42.91D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).137C2^3 | 320,1195 |
(C22×C10).138C23 = C42⋊8D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).138C2^3 | 320,1196 |
(C22×C10).139C23 = C42⋊9D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).139C2^3 | 320,1197 |
(C22×C10).140C23 = C42.92D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).140C2^3 | 320,1198 |
(C22×C10).141C23 = C42⋊10D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).141C2^3 | 320,1199 |
(C22×C10).142C23 = C42.93D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).142C2^3 | 320,1200 |
(C22×C10).143C23 = C42.94D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).143C2^3 | 320,1201 |
(C22×C10).144C23 = C42.95D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).144C2^3 | 320,1202 |
(C22×C10).145C23 = C42.96D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).145C2^3 | 320,1203 |
(C22×C10).146C23 = C42.97D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).146C2^3 | 320,1204 |
(C22×C10).147C23 = C42.98D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).147C2^3 | 320,1205 |
(C22×C10).148C23 = C42.99D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).148C2^3 | 320,1206 |
(C22×C10).149C23 = C42.100D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).149C2^3 | 320,1207 |
(C22×C10).150C23 = C4×D4⋊2D5 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).150C2^3 | 320,1208 |
(C22×C10).151C23 = D4×Dic10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).151C2^3 | 320,1209 |
(C22×C10).152C23 = C42.102D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).152C2^3 | 320,1210 |
(C22×C10).153C23 = D4⋊5Dic10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).153C2^3 | 320,1211 |
(C22×C10).154C23 = C42.104D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).154C2^3 | 320,1212 |
(C22×C10).155C23 = C42.105D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).155C2^3 | 320,1213 |
(C22×C10).156C23 = C42.106D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).156C2^3 | 320,1214 |
(C22×C10).157C23 = D4⋊6Dic10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).157C2^3 | 320,1215 |
(C22×C10).158C23 = C4×D4×D5 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).158C2^3 | 320,1216 |
(C22×C10).159C23 = C42⋊11D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).159C2^3 | 320,1217 |
(C22×C10).160C23 = C42.108D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).160C2^3 | 320,1218 |
(C22×C10).161C23 = C42⋊12D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).161C2^3 | 320,1219 |
(C22×C10).162C23 = C42.228D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).162C2^3 | 320,1220 |
(C22×C10).163C23 = D4×D20 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).163C2^3 | 320,1221 |
(C22×C10).164C23 = D20⋊23D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).164C2^3 | 320,1222 |
(C22×C10).165C23 = D20⋊24D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).165C2^3 | 320,1223 |
(C22×C10).166C23 = Dic10⋊23D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).166C2^3 | 320,1224 |
(C22×C10).167C23 = Dic10⋊24D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).167C2^3 | 320,1225 |
(C22×C10).168C23 = D4⋊5D20 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).168C2^3 | 320,1226 |
(C22×C10).169C23 = D4⋊6D20 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).169C2^3 | 320,1227 |
(C22×C10).170C23 = C42⋊16D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).170C2^3 | 320,1228 |
(C22×C10).171C23 = C42.229D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).171C2^3 | 320,1229 |
(C22×C10).172C23 = C42.113D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).172C2^3 | 320,1230 |
(C22×C10).173C23 = C42.114D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).173C2^3 | 320,1231 |
(C22×C10).174C23 = C42⋊17D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).174C2^3 | 320,1232 |
(C22×C10).175C23 = C42.115D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).175C2^3 | 320,1233 |
(C22×C10).176C23 = C42.116D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).176C2^3 | 320,1234 |
(C22×C10).177C23 = C42.117D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).177C2^3 | 320,1235 |
(C22×C10).178C23 = C42.118D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).178C2^3 | 320,1236 |
(C22×C10).179C23 = C42.119D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).179C2^3 | 320,1237 |
(C22×C10).180C23 = C24.32D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).180C2^3 | 320,1259 |
(C22×C10).181C23 = C24⋊4D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).181C2^3 | 320,1262 |
(C22×C10).182C23 = C24.35D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).182C2^3 | 320,1265 |
(C22×C10).183C23 = C24⋊5D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).183C2^3 | 320,1266 |
(C22×C10).184C23 = C24.36D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).184C2^3 | 320,1267 |
(C22×C10).185C23 = C10.362+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).185C2^3 | 320,1275 |
(C22×C10).186C23 = D5×C4⋊D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).186C2^3 | 320,1276 |
(C22×C10).187C23 = C10.392+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).187C2^3 | 320,1280 |
(C22×C10).188C23 = D20⋊19D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).188C2^3 | 320,1281 |
(C22×C10).189C23 = C10.452+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).189C2^3 | 320,1288 |
(C22×C10).190C23 = C10.1152+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).190C2^3 | 320,1290 |
(C22×C10).191C23 = C10.472+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).191C2^3 | 320,1291 |
(C22×C10).192C23 = C10.482+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).192C2^3 | 320,1292 |
(C22×C10).193C23 = C10.742- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).193C2^3 | 320,1293 |
(C22×C10).194C23 = (Q8×Dic5)⋊C2 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).194C2^3 | 320,1294 |
(C22×C10).195C23 = C10.502+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).195C2^3 | 320,1295 |
(C22×C10).196C23 = C22⋊Q8⋊25D5 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).196C2^3 | 320,1296 |
(C22×C10).197C23 = C10.152- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).197C2^3 | 320,1297 |
(C22×C10).198C23 = D5×C22⋊Q8 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).198C2^3 | 320,1298 |
(C22×C10).199C23 = C4⋊C4⋊26D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).199C2^3 | 320,1299 |
(C22×C10).200C23 = C10.162- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).200C2^3 | 320,1300 |
(C22×C10).201C23 = C10.172- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).201C2^3 | 320,1301 |
(C22×C10).202C23 = D20⋊21D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).202C2^3 | 320,1302 |
(C22×C10).203C23 = D20⋊22D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).203C2^3 | 320,1303 |
(C22×C10).204C23 = Dic10⋊21D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).204C2^3 | 320,1304 |
(C22×C10).205C23 = Dic10⋊22D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).205C2^3 | 320,1305 |
(C22×C10).206C23 = C10.512+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).206C2^3 | 320,1306 |
(C22×C10).207C23 = C10.1182+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).207C2^3 | 320,1307 |
(C22×C10).208C23 = C10.522+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).208C2^3 | 320,1308 |
(C22×C10).209C23 = C10.532+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).209C2^3 | 320,1309 |
(C22×C10).210C23 = C10.202- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).210C2^3 | 320,1310 |
(C22×C10).211C23 = C10.212- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).211C2^3 | 320,1311 |
(C22×C10).212C23 = C10.222- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).212C2^3 | 320,1312 |
(C22×C10).213C23 = C10.232- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).213C2^3 | 320,1313 |
(C22×C10).214C23 = C10.772- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).214C2^3 | 320,1314 |
(C22×C10).215C23 = C10.242- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).215C2^3 | 320,1315 |
(C22×C10).216C23 = C10.562+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).216C2^3 | 320,1316 |
(C22×C10).217C23 = C10.572+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).217C2^3 | 320,1317 |
(C22×C10).218C23 = C10.582+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).218C2^3 | 320,1318 |
(C22×C10).219C23 = C10.262- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).219C2^3 | 320,1319 |
(C22×C10).220C23 = C10.812- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).220C2^3 | 320,1323 |
(C22×C10).221C23 = C10.612+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).221C2^3 | 320,1329 |
(C22×C10).222C23 = C10.1222+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).222C2^3 | 320,1330 |
(C22×C10).223C23 = C10.622+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).223C2^3 | 320,1331 |
(C22×C10).224C23 = C10.682+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).224C2^3 | 320,1338 |
(C22×C10).225C23 = C10.692+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).225C2^3 | 320,1339 |
(C22×C10).226C23 = C2×D4×Dic5 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).226C2^3 | 320,1467 |
(C22×C10).227C23 = C2×C23.18D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).227C2^3 | 320,1468 |
(C22×C10).228C23 = C2×C20.17D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).228C2^3 | 320,1469 |
(C22×C10).229C23 = C24.38D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).229C2^3 | 320,1470 |
(C22×C10).230C23 = D4×C5⋊D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).230C2^3 | 320,1473 |
(C22×C10).231C23 = C2×Dic5⋊D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).231C2^3 | 320,1474 |
(C22×C10).232C23 = C2×C20⋊D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).232C2^3 | 320,1475 |
(C22×C10).233C23 = C24⋊8D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).233C2^3 | 320,1476 |
(C22×C10).234C23 = C24.41D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).234C2^3 | 320,1477 |
(C22×C10).235C23 = C24.42D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).235C2^3 | 320,1478 |
(C22×C10).236C23 = C10.1042- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).236C2^3 | 320,1496 |
(C22×C10).237C23 = C10.1052- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).237C2^3 | 320,1497 |
(C22×C10).238C23 = C4○D4×Dic5 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).238C2^3 | 320,1498 |
(C22×C10).239C23 = C10.1062- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).239C2^3 | 320,1499 |
(C22×C10).240C23 = (C2×C20)⋊15D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).240C2^3 | 320,1500 |
(C22×C10).241C23 = C10.1452+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).241C2^3 | 320,1501 |
(C22×C10).242C23 = C10.1462+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).242C2^3 | 320,1502 |
(C22×C10).243C23 = C10.1072- 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).243C2^3 | 320,1503 |
(C22×C10).244C23 = (C2×C20)⋊17D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).244C2^3 | 320,1504 |
(C22×C10).245C23 = C10.1472+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).245C2^3 | 320,1505 |
(C22×C10).246C23 = C10.1482+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).246C2^3 | 320,1506 |
(C22×C10).247C23 = C2×D5×C4○D4 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).247C2^3 | 320,1618 |
(C22×C10).248C23 = C2×D4⋊8D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).248C2^3 | 320,1619 |
(C22×C10).249C23 = C2×D4.10D10 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).249C2^3 | 320,1620 |
(C22×C10).250C23 = C10.C25 | φ: C23/C2 → C22 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).250C2^3 | 320,1621 |
(C22×C10).251C23 = C22⋊C4×C2×C10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).251C2^3 | 320,1514 |
(C22×C10).252C23 = D4×C2×C20 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).252C2^3 | 320,1517 |
(C22×C10).253C23 = C4○D4×C20 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).253C2^3 | 320,1519 |
(C22×C10).254C23 = C5×C22.11C24 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).254C2^3 | 320,1520 |
(C22×C10).255C23 = C5×C23.32C23 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).255C2^3 | 320,1521 |
(C22×C10).256C23 = C5×C23.33C23 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).256C2^3 | 320,1522 |
(C22×C10).257C23 = C10×C4⋊D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).257C2^3 | 320,1524 |
(C22×C10).258C23 = C10×C22⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).258C2^3 | 320,1525 |
(C22×C10).259C23 = C10×C22.D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).259C2^3 | 320,1526 |
(C22×C10).260C23 = C5×C23.37C23 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).260C2^3 | 320,1535 |
(C22×C10).261C23 = C5×C23.38C23 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).261C2^3 | 320,1538 |
(C22×C10).262C23 = C5×C23⋊2Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).262C2^3 | 320,1545 |
(C22×C10).263C23 = C5×C23.41C23 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).263C2^3 | 320,1546 |
(C22×C10).264C23 = C5×D42 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).264C2^3 | 320,1547 |
(C22×C10).265C23 = C5×D4×Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).265C2^3 | 320,1551 |
(C22×C10).266C23 = C5×C22.45C24 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).266C2^3 | 320,1553 |
(C22×C10).267C23 = C5×C22.46C24 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).267C2^3 | 320,1554 |
(C22×C10).268C23 = C5×D4⋊3Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).268C2^3 | 320,1556 |
(C22×C10).269C23 = C4○D4×C2×C10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).269C2^3 | 320,1631 |
(C22×C10).270C23 = C10×2- 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).270C2^3 | 320,1633 |
(C22×C10).271C23 = (C2×C20)⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).271C2^3 | 320,273 |
(C22×C10).272C23 = C10.49(C4×D4) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).272C2^3 | 320,274 |
(C22×C10).273C23 = Dic5.15C42 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).273C2^3 | 320,275 |
(C22×C10).274C23 = Dic5⋊2C42 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).274C2^3 | 320,276 |
(C22×C10).275C23 = C5⋊2(C42⋊8C4) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).275C2^3 | 320,277 |
(C22×C10).276C23 = C5⋊2(C42⋊5C4) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).276C2^3 | 320,278 |
(C22×C10).277C23 = C10.51(C4×D4) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).277C2^3 | 320,279 |
(C22×C10).278C23 = C2.(C4×D20) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).278C2^3 | 320,280 |
(C22×C10).279C23 = C4⋊Dic5⋊15C4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).279C2^3 | 320,281 |
(C22×C10).280C23 = C10.52(C4×D4) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).280C2^3 | 320,282 |
(C22×C10).281C23 = (C2×Dic5)⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).281C2^3 | 320,283 |
(C22×C10).282C23 = C2.(C20⋊Q8) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).282C2^3 | 320,284 |
(C22×C10).283C23 = (C2×Dic5).Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).283C2^3 | 320,285 |
(C22×C10).284C23 = (C2×C20).28D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).284C2^3 | 320,286 |
(C22×C10).285C23 = (C2×C4).Dic10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).285C2^3 | 320,287 |
(C22×C10).286C23 = C10.(C4⋊Q8) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).286C2^3 | 320,288 |
(C22×C10).287C23 = (C22×C4).D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).287C2^3 | 320,289 |
(C22×C10).288C23 = D5×C2.C42 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).288C2^3 | 320,290 |
(C22×C10).289C23 = C22.58(D4×D5) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).289C2^3 | 320,291 |
(C22×C10).290C23 = (C2×C4)⋊9D20 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).290C2^3 | 320,292 |
(C22×C10).291C23 = D10⋊2C42 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).291C2^3 | 320,293 |
(C22×C10).292C23 = D10⋊2(C4⋊C4) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).292C2^3 | 320,294 |
(C22×C10).293C23 = D10⋊3(C4⋊C4) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).293C2^3 | 320,295 |
(C22×C10).294C23 = C10.54(C4×D4) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).294C2^3 | 320,296 |
(C22×C10).295C23 = C10.55(C4×D4) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).295C2^3 | 320,297 |
(C22×C10).296C23 = (C2×C20)⋊5D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).296C2^3 | 320,298 |
(C22×C10).297C23 = (C2×Dic5)⋊3D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).297C2^3 | 320,299 |
(C22×C10).298C23 = (C2×C4).20D20 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).298C2^3 | 320,300 |
(C22×C10).299C23 = (C2×C4).21D20 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).299C2^3 | 320,301 |
(C22×C10).300C23 = C10.(C4⋊D4) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).300C2^3 | 320,302 |
(C22×C10).301C23 = (C22×D5).Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).301C2^3 | 320,303 |
(C22×C10).302C23 = (C2×C20).33D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).302C2^3 | 320,304 |
(C22×C10).303C23 = C20⋊7(C4⋊C4) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).303C2^3 | 320,555 |
(C22×C10).304C23 = (C2×C20)⋊10Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).304C2^3 | 320,556 |
(C22×C10).305C23 = C42×Dic5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).305C2^3 | 320,557 |
(C22×C10).306C23 = C4×C10.D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).306C2^3 | 320,558 |
(C22×C10).307C23 = C42⋊4Dic5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).307C2^3 | 320,559 |
(C22×C10).308C23 = C10.92(C4×D4) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).308C2^3 | 320,560 |
(C22×C10).309C23 = C4×C4⋊Dic5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).309C2^3 | 320,561 |
(C22×C10).310C23 = C42⋊8Dic5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).310C2^3 | 320,562 |
(C22×C10).311C23 = C42⋊9Dic5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).311C2^3 | 320,563 |
(C22×C10).312C23 = C42⋊5Dic5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).312C2^3 | 320,564 |
(C22×C10).313C23 = C4×D10⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).313C2^3 | 320,565 |
(C22×C10).314C23 = (C2×C4)⋊6D20 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).314C2^3 | 320,566 |
(C22×C10).315C23 = (C2×C42)⋊D5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).315C2^3 | 320,567 |
(C22×C10).316C23 = C22⋊C4×Dic5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).316C2^3 | 320,568 |
(C22×C10).317C23 = C24.44D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).317C2^3 | 320,569 |
(C22×C10).318C23 = C23.42D20 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).318C2^3 | 320,570 |
(C22×C10).319C23 = C24.3D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).319C2^3 | 320,571 |
(C22×C10).320C23 = C24.4D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).320C2^3 | 320,572 |
(C22×C10).321C23 = C24.46D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).321C2^3 | 320,573 |
(C22×C10).322C23 = C23⋊Dic10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).322C2^3 | 320,574 |
(C22×C10).323C23 = C24.6D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).323C2^3 | 320,575 |
(C22×C10).324C23 = C24.7D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).324C2^3 | 320,576 |
(C22×C10).325C23 = C24.47D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).325C2^3 | 320,577 |
(C22×C10).326C23 = C24.8D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).326C2^3 | 320,578 |
(C22×C10).327C23 = C24.9D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).327C2^3 | 320,579 |
(C22×C10).328C23 = C23.14D20 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).328C2^3 | 320,580 |
(C22×C10).329C23 = C24.48D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).329C2^3 | 320,582 |
(C22×C10).330C23 = C24.12D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).330C2^3 | 320,583 |
(C22×C10).331C23 = C24.13D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).331C2^3 | 320,584 |
(C22×C10).332C23 = C23.45D20 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).332C2^3 | 320,585 |
(C22×C10).333C23 = C24.14D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).333C2^3 | 320,586 |
(C22×C10).334C23 = C23⋊2D20 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).334C2^3 | 320,587 |
(C22×C10).335C23 = C24.16D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).335C2^3 | 320,588 |
(C22×C10).336C23 = C10.96(C4×D4) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).336C2^3 | 320,599 |
(C22×C10).337C23 = C20⋊4(C4⋊C4) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).337C2^3 | 320,600 |
(C22×C10).338C23 = (C2×Dic5)⋊6Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).338C2^3 | 320,601 |
(C22×C10).339C23 = C4⋊C4×Dic5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).339C2^3 | 320,602 |
(C22×C10).340C23 = C20⋊5(C4⋊C4) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).340C2^3 | 320,603 |
(C22×C10).341C23 = C20.48(C4⋊C4) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).341C2^3 | 320,604 |
(C22×C10).342C23 = C10.97(C4×D4) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).342C2^3 | 320,605 |
(C22×C10).343C23 = (C2×C4)⋊Dic10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).343C2^3 | 320,606 |
(C22×C10).344C23 = (C2×C20).287D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).344C2^3 | 320,607 |
(C22×C10).345C23 = C4⋊C4⋊5Dic5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).345C2^3 | 320,608 |
(C22×C10).346C23 = (C2×C20).288D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).346C2^3 | 320,609 |
(C22×C10).347C23 = (C2×C20).53D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).347C2^3 | 320,610 |
(C22×C10).348C23 = (C2×C20).54D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).348C2^3 | 320,611 |
(C22×C10).349C23 = C20⋊6(C4⋊C4) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).349C2^3 | 320,612 |
(C22×C10).350C23 = (C2×C20).55D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).350C2^3 | 320,613 |
(C22×C10).351C23 = D10⋊4(C4⋊C4) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).351C2^3 | 320,614 |
(C22×C10).352C23 = (C2×D20)⋊22C4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).352C2^3 | 320,615 |
(C22×C10).353C23 = D10⋊5(C4⋊C4) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).353C2^3 | 320,616 |
(C22×C10).354C23 = C10.90(C4×D4) | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).354C2^3 | 320,617 |
(C22×C10).355C23 = (C2×C4)⋊3D20 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).355C2^3 | 320,618 |
(C22×C10).356C23 = (C2×C20).289D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).356C2^3 | 320,619 |
(C22×C10).357C23 = (C2×C20).290D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).357C2^3 | 320,620 |
(C22×C10).358C23 = (C2×C20).56D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).358C2^3 | 320,621 |
(C22×C10).359C23 = C2×C10.10C42 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).359C2^3 | 320,835 |
(C22×C10).360C23 = C4×C23.D5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).360C2^3 | 320,836 |
(C22×C10).361C23 = C24.62D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).361C2^3 | 320,837 |
(C22×C10).362C23 = C24.63D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).362C2^3 | 320,838 |
(C22×C10).363C23 = C24.64D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).363C2^3 | 320,839 |
(C22×C10).364C23 = C24.65D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).364C2^3 | 320,840 |
(C22×C10).365C23 = C24.18D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).365C2^3 | 320,847 |
(C22×C10).366C23 = C24.19D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).366C2^3 | 320,848 |
(C22×C10).367C23 = C24.20D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).367C2^3 | 320,849 |
(C22×C10).368C23 = C24.21D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).368C2^3 | 320,850 |
(C22×C10).369C23 = C10.C22≀C2 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).369C2^3 | 320,856 |
(C22×C10).370C23 = (Q8×C10)⋊17C4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).370C2^3 | 320,857 |
(C22×C10).371C23 = (C22×D5)⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).371C2^3 | 320,858 |
(C22×C10).372C23 = C25.2D5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).372C2^3 | 320,874 |
(C22×C10).373C23 = C2×C4×Dic10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).373C2^3 | 320,1139 |
(C22×C10).374C23 = C2×C20⋊2Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).374C2^3 | 320,1140 |
(C22×C10).375C23 = C2×C20.6Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).375C2^3 | 320,1141 |
(C22×C10).376C23 = C42.274D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).376C2^3 | 320,1142 |
(C22×C10).377C23 = D5×C2×C42 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).377C2^3 | 320,1143 |
(C22×C10).378C23 = C2×C42⋊D5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).378C2^3 | 320,1144 |
(C22×C10).379C23 = C2×C4×D20 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).379C2^3 | 320,1145 |
(C22×C10).380C23 = C4×C4○D20 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).380C2^3 | 320,1146 |
(C22×C10).381C23 = C2×C20⋊4D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).381C2^3 | 320,1147 |
(C22×C10).382C23 = C2×C4.D20 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).382C2^3 | 320,1148 |
(C22×C10).383C23 = C42.276D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).383C2^3 | 320,1149 |
(C22×C10).384C23 = C2×C42⋊2D5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).384C2^3 | 320,1150 |
(C22×C10).385C23 = C42.277D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).385C2^3 | 320,1151 |
(C22×C10).386C23 = C2×C23.11D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).386C2^3 | 320,1152 |
(C22×C10).387C23 = C24.27D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).387C2^3 | 320,1162 |
(C22×C10).388C23 = C2×Dic5.5D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).388C2^3 | 320,1163 |
(C22×C10).389C23 = C2×Dic5⋊3Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).389C2^3 | 320,1168 |
(C22×C10).390C23 = C2×C20⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).390C2^3 | 320,1169 |
(C22×C10).391C23 = C2×Dic5.Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).391C2^3 | 320,1170 |
(C22×C10).392C23 = C2×C4.Dic10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).392C2^3 | 320,1171 |
(C22×C10).393C23 = C10.12- 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).393C2^3 | 320,1172 |
(C22×C10).394C23 = C2×D5×C4⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).394C2^3 | 320,1173 |
(C22×C10).395C23 = C2×C4⋊C4⋊7D5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).395C2^3 | 320,1174 |
(C22×C10).396C23 = C2×D20⋊8C4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).396C2^3 | 320,1175 |
(C22×C10).397C23 = C10.82+ 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).397C2^3 | 320,1176 |
(C22×C10).398C23 = C2×D10.13D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).398C2^3 | 320,1177 |
(C22×C10).399C23 = C2×C4⋊D20 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).399C2^3 | 320,1178 |
(C22×C10).400C23 = C10.2- 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).400C2^3 | 320,1179 |
(C22×C10).401C23 = C2×D10⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).401C2^3 | 320,1180 |
(C22×C10).402C23 = C2×D10⋊2Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).402C2^3 | 320,1181 |
(C22×C10).403C23 = C10.2+ 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).403C2^3 | 320,1182 |
(C22×C10).404C23 = C10.102+ 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).404C2^3 | 320,1183 |
(C22×C10).405C23 = C2×C4⋊C4⋊D5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).405C2^3 | 320,1184 |
(C22×C10).406C23 = C10.52- 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).406C2^3 | 320,1185 |
(C22×C10).407C23 = C10.112+ 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).407C2^3 | 320,1186 |
(C22×C10).408C23 = C10.62- 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).408C2^3 | 320,1187 |
(C22×C10).409C23 = C22×C4×Dic5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).409C2^3 | 320,1454 |
(C22×C10).410C23 = C22×C10.D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).410C2^3 | 320,1455 |
(C22×C10).411C23 = C2×C20.48D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).411C2^3 | 320,1456 |
(C22×C10).412C23 = C22×C4⋊Dic5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).412C2^3 | 320,1457 |
(C22×C10).413C23 = C2×C23.21D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).413C2^3 | 320,1458 |
(C22×C10).414C23 = C22×D10⋊C4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).414C2^3 | 320,1459 |
(C22×C10).415C23 = C2×C4×C5⋊D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).415C2^3 | 320,1460 |
(C22×C10).416C23 = C2×C23.23D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).416C2^3 | 320,1461 |
(C22×C10).417C23 = C2×C20⋊7D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).417C2^3 | 320,1462 |
(C22×C10).418C23 = C24.72D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).418C2^3 | 320,1463 |
(C22×C10).419C23 = C2×C20⋊2D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).419C2^3 | 320,1472 |
(C22×C10).420C23 = C2×Dic5⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).420C2^3 | 320,1482 |
(C22×C10).421C23 = C2×Q8×Dic5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).421C2^3 | 320,1483 |
(C22×C10).422C23 = C10.422- 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).422C2^3 | 320,1484 |
(C22×C10).423C23 = C2×D10⋊3Q8 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).423C2^3 | 320,1485 |
(C22×C10).424C23 = C2×C20.23D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).424C2^3 | 320,1486 |
(C22×C10).425C23 = Q8×C5⋊D4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).425C2^3 | 320,1487 |
(C22×C10).426C23 = C10.442- 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).426C2^3 | 320,1488 |
(C22×C10).427C23 = C10.452- 1+4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).427C2^3 | 320,1489 |
(C22×C10).428C23 = C22×C23.D5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).428C2^3 | 320,1511 |
(C22×C10).429C23 = C2×C24⋊2D5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).429C2^3 | 320,1512 |
(C22×C10).430C23 = C23×Dic10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).430C2^3 | 320,1608 |
(C22×C10).431C23 = D5×C23×C4 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).431C2^3 | 320,1609 |
(C22×C10).432C23 = C23×D20 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).432C2^3 | 320,1610 |
(C22×C10).433C23 = C22×C4○D20 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).433C2^3 | 320,1611 |
(C22×C10).434C23 = C22×D4⋊2D5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).434C2^3 | 320,1613 |
(C22×C10).435C23 = C22×Q8×D5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).435C2^3 | 320,1615 |
(C22×C10).436C23 = C22×Q8⋊2D5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).436C2^3 | 320,1616 |
(C22×C10).437C23 = C2×Q8.10D10 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).437C2^3 | 320,1617 |
(C22×C10).438C23 = C24×Dic5 | φ: C23/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).438C2^3 | 320,1626 |
(C22×C10).439C23 = C10×C2.C42 | central extension (φ=1) | 320 | | (C2^2xC10).439C2^3 | 320,876 |
(C22×C10).440C23 = C5×C42⋊4C4 | central extension (φ=1) | 320 | | (C2^2xC10).440C2^3 | 320,877 |
(C22×C10).441C23 = C22⋊C4×C20 | central extension (φ=1) | 160 | | (C2^2xC10).441C2^3 | 320,878 |
(C22×C10).442C23 = C4⋊C4×C20 | central extension (φ=1) | 320 | | (C2^2xC10).442C2^3 | 320,879 |
(C22×C10).443C23 = C5×C24⋊3C4 | central extension (φ=1) | 80 | | (C2^2xC10).443C2^3 | 320,880 |
(C22×C10).444C23 = C5×C23.7Q8 | central extension (φ=1) | 160 | | (C2^2xC10).444C2^3 | 320,881 |
(C22×C10).445C23 = C5×C23.34D4 | central extension (φ=1) | 160 | | (C2^2xC10).445C2^3 | 320,882 |
(C22×C10).446C23 = C5×C42⋊8C4 | central extension (φ=1) | 320 | | (C2^2xC10).446C2^3 | 320,883 |
(C22×C10).447C23 = C5×C42⋊5C4 | central extension (φ=1) | 320 | | (C2^2xC10).447C2^3 | 320,884 |
(C22×C10).448C23 = C5×C42⋊9C4 | central extension (φ=1) | 320 | | (C2^2xC10).448C2^3 | 320,885 |
(C22×C10).449C23 = C5×C23.8Q8 | central extension (φ=1) | 160 | | (C2^2xC10).449C2^3 | 320,886 |
(C22×C10).450C23 = C5×C23.23D4 | central extension (φ=1) | 160 | | (C2^2xC10).450C2^3 | 320,887 |
(C22×C10).451C23 = C5×C23.63C23 | central extension (φ=1) | 320 | | (C2^2xC10).451C2^3 | 320,888 |
(C22×C10).452C23 = C5×C24.C22 | central extension (φ=1) | 160 | | (C2^2xC10).452C2^3 | 320,889 |
(C22×C10).453C23 = C5×C23.65C23 | central extension (φ=1) | 320 | | (C2^2xC10).453C2^3 | 320,890 |
(C22×C10).454C23 = C5×C24.3C22 | central extension (φ=1) | 160 | | (C2^2xC10).454C2^3 | 320,891 |
(C22×C10).455C23 = C5×C23.67C23 | central extension (φ=1) | 320 | | (C2^2xC10).455C2^3 | 320,892 |
(C22×C10).456C23 = C5×C23⋊2D4 | central extension (φ=1) | 160 | | (C2^2xC10).456C2^3 | 320,893 |
(C22×C10).457C23 = C5×C23⋊Q8 | central extension (φ=1) | 160 | | (C2^2xC10).457C2^3 | 320,894 |
(C22×C10).458C23 = C5×C23.10D4 | central extension (φ=1) | 160 | | (C2^2xC10).458C2^3 | 320,895 |
(C22×C10).459C23 = C5×C23.78C23 | central extension (φ=1) | 320 | | (C2^2xC10).459C2^3 | 320,896 |
(C22×C10).460C23 = C5×C23.Q8 | central extension (φ=1) | 160 | | (C2^2xC10).460C2^3 | 320,897 |
(C22×C10).461C23 = C5×C23.11D4 | central extension (φ=1) | 160 | | (C2^2xC10).461C2^3 | 320,898 |
(C22×C10).462C23 = C5×C23.81C23 | central extension (φ=1) | 320 | | (C2^2xC10).462C2^3 | 320,899 |
(C22×C10).463C23 = C5×C23.4Q8 | central extension (φ=1) | 160 | | (C2^2xC10).463C2^3 | 320,900 |
(C22×C10).464C23 = C5×C23.83C23 | central extension (φ=1) | 320 | | (C2^2xC10).464C2^3 | 320,901 |
(C22×C10).465C23 = C5×C23.84C23 | central extension (φ=1) | 320 | | (C2^2xC10).465C2^3 | 320,902 |
(C22×C10).466C23 = C4⋊C4×C2×C10 | central extension (φ=1) | 320 | | (C2^2xC10).466C2^3 | 320,1515 |
(C22×C10).467C23 = C10×C42⋊C2 | central extension (φ=1) | 160 | | (C2^2xC10).467C2^3 | 320,1516 |
(C22×C10).468C23 = Q8×C2×C20 | central extension (φ=1) | 320 | | (C2^2xC10).468C2^3 | 320,1518 |
(C22×C10).469C23 = C10×C42.C2 | central extension (φ=1) | 320 | | (C2^2xC10).469C2^3 | 320,1529 |
(C22×C10).470C23 = C10×C4⋊Q8 | central extension (φ=1) | 320 | | (C2^2xC10).470C2^3 | 320,1533 |
(C22×C10).471C23 = Q8×C22×C10 | central extension (φ=1) | 320 | | (C2^2xC10).471C2^3 | 320,1630 |